
biomolecules

Review

The Effects of Vitamin D on Immune System and
Inflammatory Diseases

Tomoka Ao 1,2,3, Junichi Kikuta 1,2,3 and Masaru Ishii 1,2,3,*

����������
�������

Citation: Ao, T.; Kikuta, J.; Ishii, M.

The Effects of Vitamin D on Immune

System and Inflammatory Diseases.

Biomolecules 2021, 11, 1624. https://

doi.org/10.3390/biom11111624

Academic Editor: Christophe Brunet

Received: 3 September 2021

Accepted: 29 October 2021

Published: 3 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences,
Osaka University, Osaka 565-0871, Japan; tomoka_ao1203@icb.med.osaka-u.ac.jp (T.A.);
jkikuta@icb.med.osaka-u.ac.jp (J.K.)

2 WPI-Immunology Frontier Research Center, Department of Immunology and Cell Biology, Osaka University,
Osaka 565-0871, Japan

3 Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation,
Health and Nutrition, Osaka 567-0085, Japan

* Correspondence: mishii@icb.med.osaka-u.ac.jp

Abstract: Immune cells, including dendritic cells, macrophages, and T and B cells, express the
vitamin D receptor and 1α-hydroxylase. In vitro studies have shown that 1,25-dihydroxyvitamin
D, the active form of vitamin D, has an anti-inflammatory effect. Recent epidemiological evidence
has indicated a significant association between vitamin D deficiency and an increased incidence, or
aggravation, of infectious diseases and inflammatory autoimmune diseases, such as rheumatoid
arthritis, systemic lupus erythematosus, and multiple sclerosis. However, the impact of vitamin D on
treatment and prevention, particularly in infectious diseases such as the 2019 coronavirus disease
(COVID-19), remains controversial. Here, we review recent evidence associated with the relationship
between vitamin D and inflammatory diseases and describe the underlying immunomodulatory
effect of vitamin D.

Keywords: vitamin D; immune system; COVID-19; rheumatoid arthritis (RA); systemic lupus
erythematosus (SLE); multiple sclerosis (MS)

1. Introduction

Vitamin D deficiency, which causes an imbalance in bone remodeling, is a global public
health problem and its frequency is increasing. Due to the pleiotropic effects of vitamin
D, its deficiency is related to a higher risk of cardiovascular diseases [1–3], infectious
diseases, and autoinflammatory diseases, such as rheumatoid arthritis (RA), systemic
lupus erythematosus (SLE), and multiple sclerosis (MS). In addition, vitamin D taken for
the treatment and prevention of disease has been debated, given its immunosuppressive
effect. Anti-cancer effects of vitamin D have found application in cancer treatment [4].
Recent studies have shown that immune cells, such as monocytes, macrophages, dendritic
cells, and lymphocytes, express the vitamin D receptor and a vitamin D activating enzyme,
indicating that these cells can produce and respond to activated vitamin D. This suggests
that vitamin D deficiency may have a significant impact on inflammatory disorders. We
reviewed several recent studies to investigate the mechanisms of vitamin D activity in
immune cells and the role of vitamin D in infectious and autoimmune diseases.

2. Vitamin D and the Immune Cells

Granulocytes, dendritic cells, monocytes/macrophages, and lymphocytes play an
important role in the regulation of the immune system, the inflammatory response, and
bone remodeling. In the 1980s, Abe et al. reported that vitamin D induces differentiation of
monocytes and macrophages [5]. It has also been demonstrated that dendritic cells, mono-
cytes/macrophages, and T and B cells express vitamin D and 1α-hydroxylase (CYP27B1),
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the vitamin D-activating enzyme [6]. In this section, we discuss the function of vitamin D
in these immune cells, which play important roles in infectious and autoimmune diseases.

2.1. Dendritic Cells

A dendritic cell acts as an antigen-presenting cell to T cells, priming the adaptive
immune response. Stimulation with the active form of vitamin D downregulates MHC
class II and co-stimulatory molecules (such as CD40, CD80, and CD86), expressed on
dendritic cells, resulting in T cell activation. In addition, activated vitamin D or vitamin
D analogues suppress dendritic cell cytokine production, specifically, interleukin (IL)-12,
which affects the differentiation of T helper cells into Th1 cells, and IL-23, which affects the
differentiation of T helper cells into Th17 cells. Vitamin D also promotes expression of the
anti-inflammatory cytokine IL-10 [7,8].

2.2. Monocytes/Macrophages

Monocytes/macrophages play an important role in the protection of infections by
producing inflammatory cytokines. Components from bacteria, viruses, and fungi are
recognized by toll-like receptors expressed on the surfaces of monocytes and macrophages,
which upregulate the expression of the vitamin D receptor (VDR) and CYP27B1 [9]. After
transport into the cell, 25-hydroxyvitamin D (25D) is metabolized into the active form of
vitamin D, 1,25-dihydroxyvitamin D (1,25D), by CYP27B1. Within the cell, 1,25D binds to
VDR, which exists in the cytosol or nucleus, and the activated VDR forms a heterodimer
with the retinoid-X receptor (RXR). The heterodimer binds to DNA and induces the pro-
duction of antibiotic peptides, such as cathelicidin and β-defensin 2 [10,11]. These peptides
produce antibiotic effects by destroying the cell membranes of bacteria and viruses or by
activating an antibiotic signaling cascade in infected cells.

The NF-κB transcription factor is required for the expression of DEFB4, the gene en-
coding β-defensin 2, and 1,25D has been shown to affect NF-κB activation. 1,25D induces
the expression of nucleotide-binding oligomerization domain 2 (NOD2), an intracellular
pathogen-recognizing protein. NOD2 binds to muramyl dipeptide, a common peptidogly-
can among gram-negative bacteria, to promote the transcription of DEFB4 via NF-κB [12].
Furthermore, 1,25D has been shown to induce autophagy, a conserved cellular degradation
and recycling process in eukaryotes, in macrophages, and to promote antibiotic activity
(Figure 1). Yuk et al. reported that 1,25D induces transcription of the autophagy-associated
proteins Atg-5 and Beclin-1, which promote autophagy via the induction of cathelicidin
and its downstream factors (p38, ERK, and C/EBPβ) [13]. 1,25D produced by monocytes
and macrophages induces the expression of cathelicidin and β-defensin 2, which con-
tribute to protection against infections [14]. It also regulates the epigenetic programming of
monocytes/macrophages during immune challenges and, thereby, affects immunological
memory and subtype differentiation of immune cells [15].

2.3. T Cells

T cells interact with antigen-presenting dendritic cells to induce an antigen-specific
immune response. T cells express both the VDR and CYP27B1. Naïve T cells express a
low level of the VDR, which gradually increases upon activation. Moreover, 1,25D sup-
presses the proliferation and differentiation of CD4-positive T cells via cytokine secretion.
Specifically, 1,25D reduces Th1-type differentiation and the secretion of inflammatory cy-
tokines (IL-2, IFNγ, and TNF-α), and promotes Th2-type differentiation and the secretion
of anti-inflammatory cytokines (IL-4, IL-5, and IL-10) [16]. Additionally, 1,25D inhibits the
secretion of Th17-related cytokines (IL-17, IFNγ, IL-21, and IL-22) and negatively regulates
the RAR-related orphan receptor C and the aryl hydrocarbon receptor, which are master
regulators of Th17-type differentiation [17,18]. Conversely, 1,25D promotes the differentia-
tion of regulatory T cells, preventing an increased autoimmune response by inducing the
anti-inflammatory cytokine IL-10 and the FoxP3 transcription factor [19].



Biomolecules 2021, 11, 1624 3 of 9

Biomolecules 2021, 11, x FOR PEER REVIEW 3 of 10 
 

 
Figure 1. Effects of vitamin D on immune cells. Activation of toll-like receptors by pathogens in-
creases the expression of vitamin D receptor (VDR) and CYP27B1. Upon entering the cell, 25D is 
metabolized to 1,25D by CYP27B1. 1,25D then binds to VDR, which induces cathelicidin and β-
defensin 2. Cathelicidin promotes antibiotic activity via autophagy [14]. 
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Figure 1. Effects of vitamin D on immune cells. Activation of toll-like receptors by pathogens
increases the expression of vitamin D receptor (VDR) and CYP27B1. Upon entering the cell, 25D
is metabolized to 1,25D by CYP27B1. 1,25D then binds to VDR, which induces cathelicidin and
β-defensin 2. Cathelicidin promotes antibiotic activity via autophagy [14].

2.4. B Cells

B cells play a key role in autoimmune disease via the production of autoantibodies;
they also express the VDR and CYP27B1. Previous studies have indicated that B cell
differentiation, proliferation, and antibody production are suppressed by 1,25D-treated T
helper cells. However, a recent study demonstrated that 1,25D itself suppresses naïve B
cell differentiation or maturation to memory B and plasma cells [20].

3. Vitamin D and Infectious Disease

In recent years, epidemiological data have shown that vitamin D deficiency is associ-
ated with morbidity in several infectious diseases. However, vitamin D supplementation as
a treatment for infectious diseases remains controversial, in part due to conflicting clinical
study results [21]. In this section, we will focus on respiratory infections, including the
2019 coronavirus disease (COVID-19) and the flu. We reviewed recent clinical studies
on the correlation between vitamin D deficiency and morbidity, the effects of vitamin D
supplementation in randomized controlled trials (RCT), and the underlying mechanisms.

3.1. Flu and Vitamin D

It has been reported that a low serum level of 25D in patients is positively correlated
with morbidity in upper respiratory tract infections, including the flu. The increased
morbidity of the flu in the winter may be related to decreased exposure to sunlight since
synthesis of the active form of vitamin D requires sunlight. Interestingly, in cases with an
increase in the serum 1,25D level by 10 nmol/L, the risk of infection decreases by 7% [22].
However, the use of vitamin D supplementation continues to be controversial. Hayashi et al.
found that mice fed a diet consisting of a high dose of 25D and infected with the influenza
virus exhibited decreased production of the inflammatory cytokines, IL-5 and IFN-γ [23]. In
an RCT conducted by Murdoch, healthy adults were given more than 100,000 IU of vitamin
D3 for 1 month; however, morbidity resulting from upper respiratory tract infections did
not decrease [24]. Conversely, another RCT conducted by Camargo demonstrated that
vitamin D3 administration (300 IU/day for 3 months) resulted in decreased morbidity
related to upper respiratory tract infections in Mongolian children [25]. However, another
RCT targeting immunodeficient patients in Sweden showed that daily administration of
vitamin D3 (4000 IU/day) reduced symptoms, the amount of pathogen detected in mucus,
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and the duration of antibiotic treatment [26,27]. Moreover, a double-blind trial conducted
by Urashima et al. indicated that children treated with vitamin D3 (1200 IU/day) had a
significantly lower rate of flu type A (18.6%) compared to the placebo group (10.8%) [28].
In that trial, vitamin D supplementation was significantly effective in children with asthma.

3.2. COVID-19 and Vitamin D

COVID-19 is a serious public health threat. Its pathogen, the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), causes respiratory symptoms. Many observational
studies have demonstrated that serum vitamin D levels are inversely correlated with the
incidence and severity of COVID-19 [29]. The suggested mechanism is that vitamin D
suppresses the renin-angiotensin system, increases ACE2 concentration in acute lung injury,
and induces an interferon (IFN)-mediated antiviral reaction. Xu et al. suggested that 1,25D
alleviates lipopolysaccharide-induced acute lung injury through renin suppression and
Ang II expression [30]. A similar mechanism may be expected in SARS-CoV-2-related acute
respiratory distress syndrome (ARDS). Type I IFNs are natural antiviral mediators, and
there is evidence that their response contributes to COVID-19 severity [31]. A molecular
study has described a constitutive inhibitory interaction between unbound VDR and
STAT1, a transcription factor in Type I IFN signaling. Consequently, vitamin D deficiency
could reduce the effectiveness of the IFN-mediated antiviral response due to higher levels
of unbound VDR [32]. T Therefore, vitamin D supplementation may contribute to the
prevention of severe COVID-19.

4. Vitamin D and Autoimmune Disease

Clinical studies have indicated that vitamin D deficiency is positively correlated with
the onset, or exacerbation, of various autoimmune diseases [33]. Studies seeking to define
the mechanisms underlying this finding are ongoing. However, as in infectious diseases,
there is some debate as to whether active vitamin D or vitamin D supplementation improves
autoimmune disease pathology. In this section, we review studies on the correlation
between serum vitamin D levels and the onset or exacerbation of autoimmune diseases,
along with the use of vitamin D in their treatment, and the underlying mechanisms.

4.1. RA and Vitamin D

RA is an autoimmune disease that typically involves chronic synovial inflammation
and joint destruction, and causes problems with motility. Several studies have reported a
correlation between serum 25D levels and RA [34,35]. Caraba et al. reported a significant
inverse correlation between 25D levels and disease activity score 28 (DAS28), TNF-α, and
IL-6. A significant positive correlation between 25D and endothelial function has also been
reported [36]. In a study with 645 early RA patients, vitamin D deficiency correlated with
more active and severe disease and was suggested as a useful biomarker to predict disability
progression over one year [35]. However, a causal relationship between low 25D levels and
disease activity is difficult to establish because it is possible that patients with high disease
activity may have reduced exposure to sunlight, which may decrease vitamin D synthesis
in the skin [37]. Several studies have investigated the relationship between vitamin D
insufficiency/deficiency and the risk of RA, but only a few studies have demonstrated a
significant correlation. The role of vitamin D supplementation in the prevention of RA was
verified by the Women’s Health Initiative Calcium plus Vitamin D trial. RA morbidity was
not lower in the calcium plus vitamin D-treated group compared to the placebo group [38].
Vitamin D has also been used for treatment. A randomized trial conducted in 150 patients
from India concluded that weekly supplementation of 60,000 IU in early treatment-naïve
RA patients resulted in pain relief [39]. In a meta-analysis of six randomized controlled
trials, vitamin D complementary therapy resulted in more beneficial effects on DAS28,
ESR. However, improvement was not observed in other parameters such as VAS (Patient
Global Pain Score), SJC (Swollen Joint Count), or CRP. Notably, in a subgroup analysis,
a significantly improved VAS score was observed with vitamin D supplementation of
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more than 50,000 IU/week, for more than 12 weeks [40]. The pharmacological mechanism
of 1,25D in RA has also been investigated. In vitro, 1,25D at an optimal physiological
concentration in combination with corticosteroids additively inhibited the TNF-α, IL-17,
IL-6, and matrix metallopeptidase (MMP) production by synoviocytes cocultured with T
cells [41]. Furthermore, in VDR-deficient mice, TNF-α-induced arthritis was found to be
severe, and more macrophages and fibroblasts were found in the joints [42]. It has been
suggested that vitamin D affects the on-site inflammatory cells. Another study reported that
1,25D treatment in adjuvant-induced arthritis (AIA) did not suppress the local production
of inflammatory cytokines but suppressed them in the spleen, which suggested that 1,25D
has systemic effects [43]. Further studies are needed to reveal the underlying mechanism.

4.2. SLE and Vitamin D

SLE is an autoimmune disease characterized by the deposition of immune complexes
in tissue and systemic inflammation. Patients with SLE tend to have low levels of 25D;
recent studies have indicated that a low level of 25D in patient serum is associated with
the SLE disease activity index score [44–47]. Data from a Chinese study have shown a
possible link between vitamin D insufficiency and flare severity [48]. The use of 1,25D has
been evaluated in pathological murine models of disease. Lemire et al. reported that the
administration of 1,25D to MRL/lpr mice, an SLE mouse model, improved skin lesions [49],
but no improvement in renal lesions was observed. However, Deluca et al. found that
1,25D administration did improve renal lesions [50]. One mechanism underlying 1,25D
function in SLE has been defined in in vitro studies, as described here. Treatment of
monocytes from SLE patients with 1,25D or its analogue resulted in decreased antibody
production, particularly antinuclear antibodies produced by the B cells [51]. These results
support the suggestion that reducing vitamin D deficiency is an effective method to control
SLE disease. However, it is difficult to maintain proper vitamin D levels in SLE patients.
One reason is that it is often recommended that SLE patients avoid exposure to the sun
because some patients exhibit sensitivity to sunlight. A consensus on the use of vitamin D
supplementation in SLE patients has not yet been established [52].

4.3. MS and Vitamin D

MS is an autoimmune disease characterized by frequent inflammatory lesions in the
central nervous system, which often cause repeated periods of exacerbation and remission.
In recent years, the relationship between vitamin D deficiency and MS has become a
topic of interest. MS is prevalent in high-latitude regions, possibly because of decreased
exposure to sunlight and the consequent reduction in vitamin D synthesis [53]. Serum
25D and 1,25D levels are lower in MS patients compared with healthy volunteers, and
serum 25D levels were shown to be associated with disease activity and severity [54]. A
case–control study conducted in US soldiers identified 25D deficiency as a risk factor for MS
in Caucasians, indicating that vitamin D deficiency is associated with MS pathogenesis [55].
However, it is difficult to establish a causal relationship between vitamin D deficiency
and MS. The experimental autoimmune encephalomyelitis (EAE) model can be used to
analyze the relationship between vitamin D deficiency and MS. Cantorna et al. revealed
that administration of 1,25D prior to inducing EAE prevents disease onset, and treatment
with 1,25D after EAE induction inhibits disease progression [56]. One potential mechanism
of action may be that 1,25D suppresses IL-12 production in dendritic cells, promoting the
production of anti-inflammatory cytokines (such as IL-10), which inhibit the differentiation
and proliferation of Th1 cells [7,27,57–59] (Figure 2). A recent clinical study conducted in
relapsing–remitting MS patients found that a high dose of vitamin D3 (50,000 IU/5 days)
taken for 3 months significantly improved mental state compared with the placebo [60].
Further studies on vitamin D treatment of MS are necessary to determine its usefulness.
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Figure 2. In experimental autoimmune encephalomyelitis (EAE) model, 1,25D inhibits interleukin
(IL)-12 production by suppressing maturation of dendritic cells. Consequently, proliferation of Th1
cells is inhibited. On the other hand, 1,25D promotes the differentiation of T cells into Th2 or Treg cells.
1,25D plays an anti-inflammatory role by suppressing proinflammatory cytokines such as TNF-α or
by promoting anti-inflammatory cytokines such as IL-10 or TGF-β derived from macrophages [27].

4.4. Autoimmune Endocrine Disorders and Vitamin D

Vitamin D deficiency also causes autoimmune endocrine disorders, including Hashimoto
thyroiditis, type-1 diabetes mellitus (T1DM), Addison’s disease, and Graves’ disease [61].
Several studies have suggested that the VDR polymorphism may be associated with
autoantibody production and disease susceptibility [62,63]. Furthermore, polymorphism
of CYP27B1, another component of vitamin D metabolism, was found to be associated
with Addison’s disease [64]. However, the effectiveness of vitamin D supplementation in
preventing the progression of these diseases has not been established.

5. Conclusions

Vitamin D acts directly on immune cells, which play a key role in autoimmune diseases.
Clinical studies have demonstrated that vitamin D deficiency is related to morbidity in
infectious diseases and the onset or progression of autoimmune diseases, such as RA,
SLE, and MS. Vitamin D supplementation has been utilized to protect against or treat
some inflammatory diseases; however, its effectiveness remains unclear. Further study is
necessary to determine the mechanisms of activation of vitamin D in each disease and to
establish proper treatment strategies for the future.
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