

MALATTIE MUSCOLO-SCHELETRICHE

TERAPIA INTEGRATA, PERSONALIZZATA E QUALITÀ DI VITA

ROMA 6 - 7 ottobre 2023

Presidente del GISMO Ranuccio Nuti

Presidenti del Congresso

Silvia Migliaccio

Regione

Lombardia

Giovanni Minisola

GISMO

Gruppo Italiano Studio Malattie Metabolismo Osseo www.gismo.net

- Malattie Muscolo-Scheletriche
- Malattie Metaboliche

Osteoporosi

Nutrizione

SABATO 7 OTTOBRE

Registrazione ECM

SESSIONE III

08.30 COMUNICAZIONI ORALI

Moderatori: Vincenzo Ortore - Alessandra Pompa

09.00 LETTURA

Moderatore: Bruno Frediani

Hot topics reumatologici nella pratica clinica

quotidiana

Giovanni Minisola

SESSIONE IV

UP TO DATE NELLA TERAPIA DELL'OSTEOPOROSI

Moderatori: Stefano Gonnelli - Sergio Salomone

09.30	La terapia sequenziale o combinata criteri di scelta
	Iacopo Chiodini

La gestione della non responsività terapeutica nell'osteoporosi

Bruno Frediani

Terapia ormonale sostitutiva e SERMs

Stefano Lello - Anna Capozzi

Il corretto utilizzo dei farmaci anabolici

Daniela Merlotti

Abaloparatide, dalla ricerca alla pratica clinica

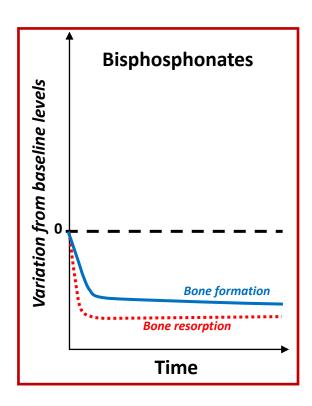
Fabio Vescini

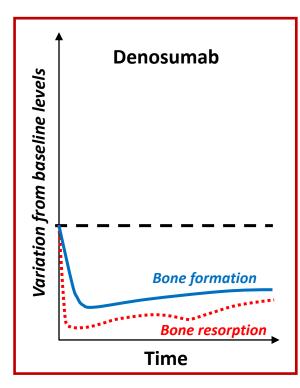
DICHIARAZIONE DI TRASPARENZA

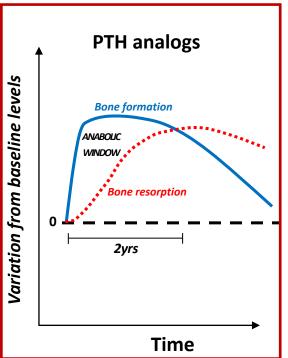
Il sottoscritto **Iacopo Chiodini**Dichiara

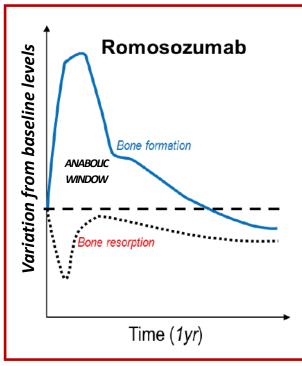
Che negli ultimi due anni ha avuto i seguenti rapporti anche di finanziamento con i soggetti portatori di interessi commerciali in campo sanitario:

- HRA Pharma
- Corcept Therapeutics
- UCB
- Amgen
- Sandoz


AGENDA


- Premesse
- Paziente naïve ad alto rischio di frattura o di rifrattura
- Paziente in terapia con bisfosfonat
- Terapia combinata
- Conclusion





BONE TURNOVER CHANGES WITH THE AVAILABLE DRUGS FOR THE TREATMENT OF OSTEOPOROSIS

Long-standing effect

ON-OFF effect and rebound

Short-term effect

Short-term effect

AGENDA

- Premesse e definizioni
- Paziente naïve ad alto rischio di frattura o di rifrattura
- Paziente in terapia antiriassorbitiva
- Terapia combinata
- Conclusion

QUESITO 4

Quale strategia terapeutica, sia a breve che a lungo termine, risulta più efficace nel trattamento del paziente con frattura da fragilità?

A causa dell'alta eterogeneità riscontrata in letteratura rispetto alle diverse strategie farmacologiche, si riportano di seguito le sequanzialità analizzate, e le relative pubblicazioni identificate:

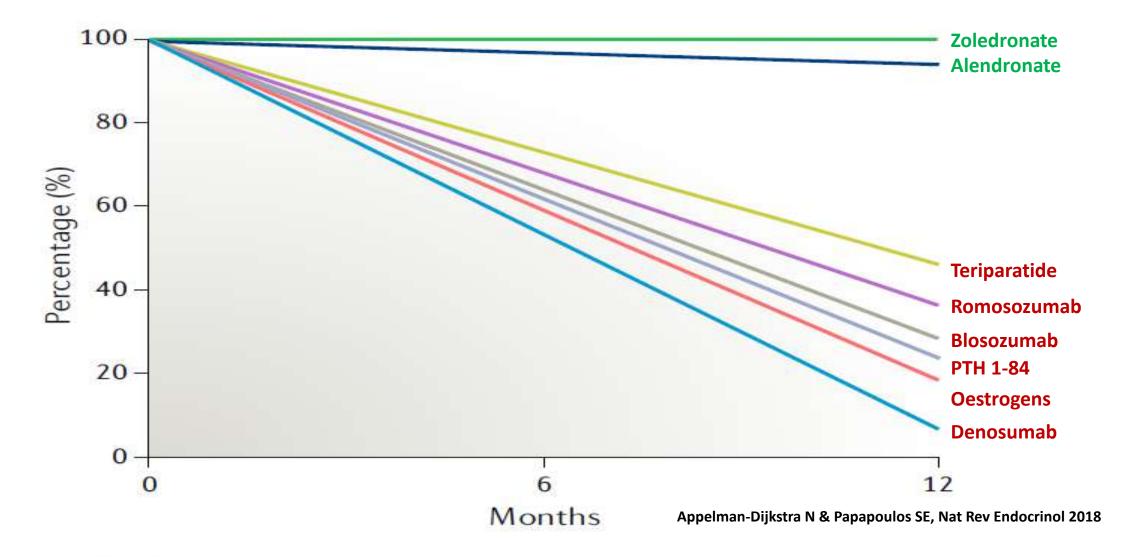
ANABOLICO - ANTI-RIASSORBITIVO

- <u>1. Romosozumab Denosumab vs Placebo Denosumab</u> (Cosman 2016, Lewiecki 2019, Miyauchi 2019, Prince 2005)
- 2. Teriparatide Denosumab vs Teriparatide Alendronato o Minodronato (Niimi 2018)
- 3. Romosozumab Alendronato vs Solo alendronato (Cosman 2020, Saag 2017)
- 4. Anabolico Anti-riassorbitivo vs Anabolico-placebo (Black 2005, Kendler 2019)

ANTI-RIASSORBITIVO – ANABOLICO

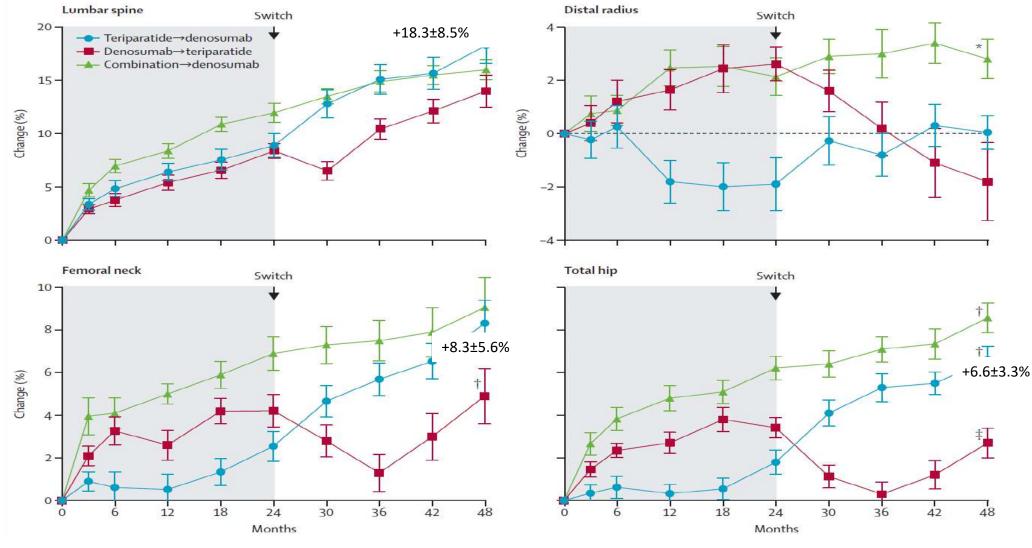
- 1. Anti-riassorbitivo Teriparatide vs Placebo Teriparatide (Obermayer-Pietsch 2008, Middleton 2007, Fahrleitner-Pammer 2016)
- 2. Anti-riassorbitivo Teriparatide vs solo Anti-riassorbitivo (Gonnelli 2016)
- 3. Anti-riassorbitivo Anabolico (Romosozumab o Teriparatide) (Langdhal 2017)
- 4. Anti-riassorbitivo (Risedronato vs Alendronato) Teriparatide (Miller 2008)
- 5. Anti-riassorbitivo (Risedronato, Alendronato, Etidronato, Non bisfosfonato) Teriparatide (Boonen 2008)

CONFRONTO DIRETTO (Leder 2015)



LUMBAR SPINE BMD 1 YEAR AFTER CESSATION OF TREATMENTS FOR OSTEOPOROSIS

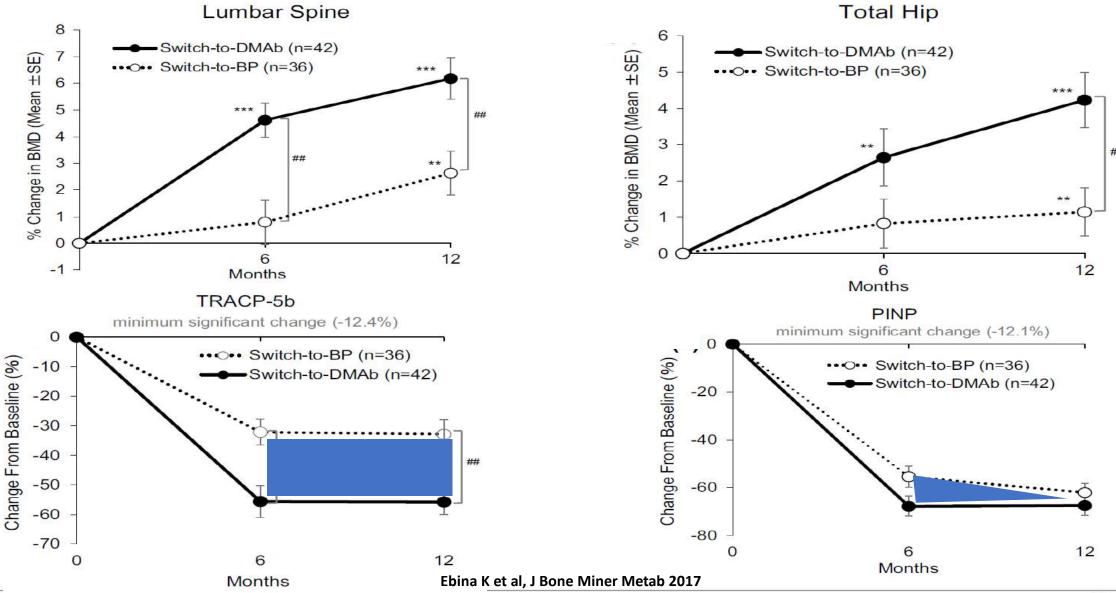
Riduzione del rischio di frattura NON VERTEBRALE a 30 mesi dallo switch da Teriparatide (o placebo) a bisfosfonati


Study or Subgroup	log[Risk Ratio]	SE	Weight	Risk Ratio IV, Random, 95% CI			Ratio m, 95% Cl	
Prince 2005_TPT 20 µg to BPs	-0.3567	0.2486	53.6%	0.70 [0.43, 1.14]		-	-	
Prince 2005_TPT 40 µg to BPs	-0.6162	0.267	46.4%	0.54 [0.32, 0.91]				
Total (95% CI)			100.0%	0.62 [0.43, 0.89]		•	-38%	
Heterogeneity: Tau ² = 0.00; Chi ² :	= 0.51, df = 1 (P =	0.48); l ^z =	= 0%		0.01		40	100
Test for overall effect: $Z = 2.62$ (P		0.01	TPT to BPs	placebo to BPs	100			

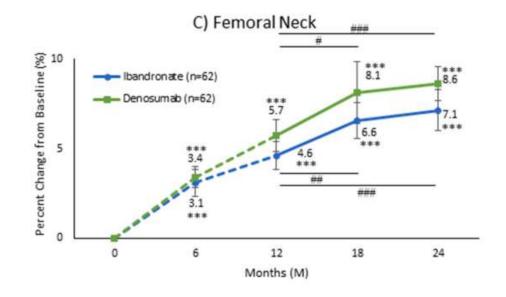
SEQUENTIAL THERAPY: TERIPARATIDE→**DENOSUMAB**

DATA SWITCH STUDY

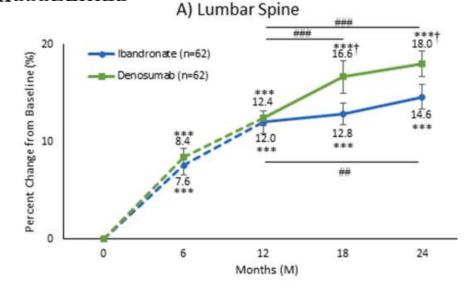
Leder BZ et al, Lancet 2015

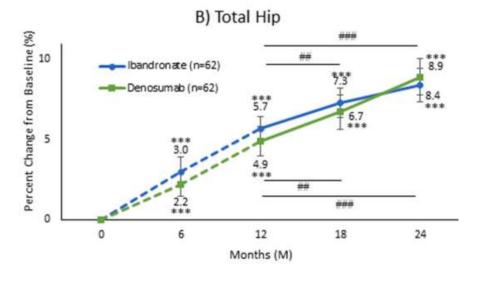


SWITCHING DAILY TPTD TO DMAB SIGNIFICANTLY INCREASED BMD AND DECREASED BONE RESORPTION COMPARED TO SWITCHING TO ORAL BP



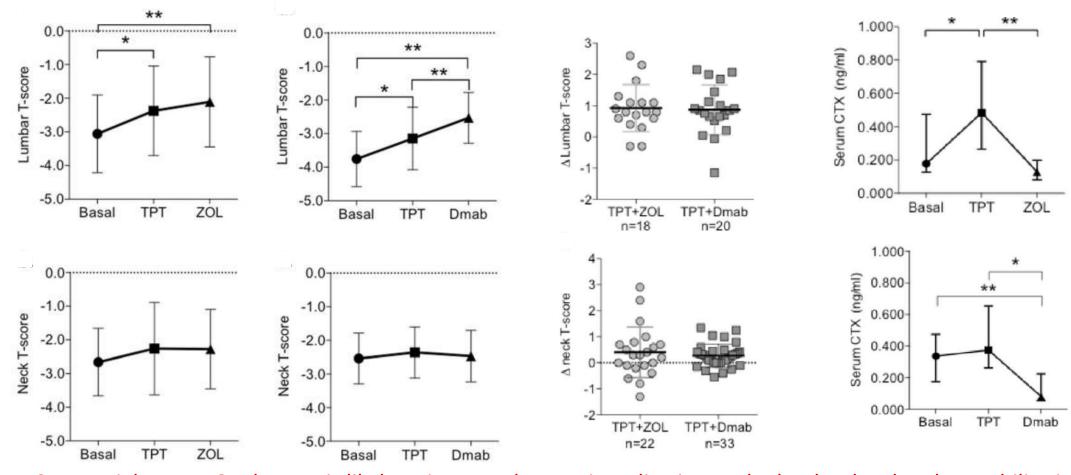
Verification of efficacy and safety of ibandronate or denosumab for


postmenopausal osteoporosis after 12-month treatment with romosozumab


as sequential therapy: The prospective VICTOR study

81 Ibandronato post Romosozumab 80 Denosumab post Romosozumab

Tomonori Kobayakawa et al Bone 2022



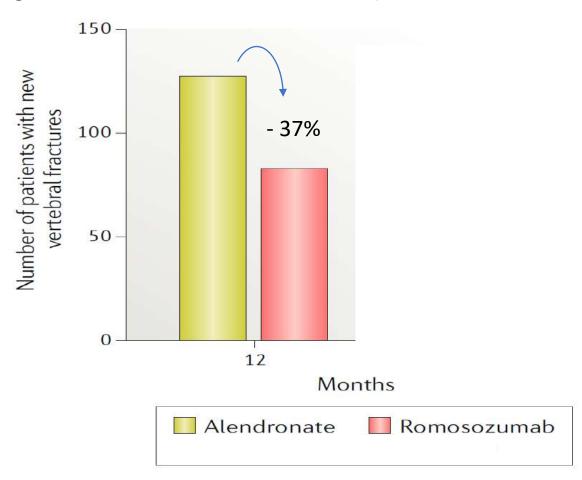
Efficacy of switching from teriparatide to zoledronic acid or denosumab on bone mineral density and biochemical markers of bone turnover in older patients with severe osteoporosis: a real-life study

Retrospective study on 56 severe osteoporotic patients

TPT for 24 months followed by 24 months of zoledronic acid (ZOL) (TPT + ZOL) or Dmab (TPT+Dmab).

Sequential TPT + ZOL therapy is likely to increase bone mineralization at the lumbar level and to stabilize it at the femoral level, similarly to what obtained with the sequential TPT+Dmab

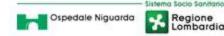
Dito G et al, Endocrine 2023, epub ahead of print



ROMOSOZUMAB → **ALENDRONATE**: ARCH STUDY

4,039 women, mean age of 74.3 years, with severe PM osteoporosis (Romo 210 mg/month vs Ale 70 mg/week for 12 months, than Ale in all)

I year

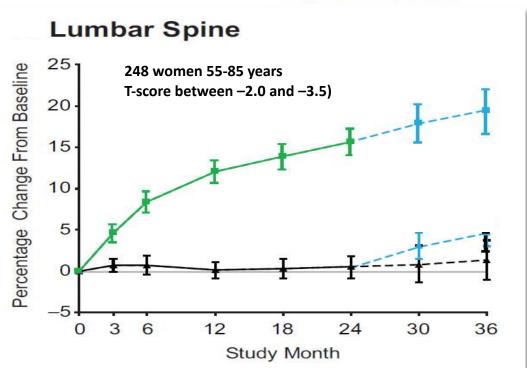

- Clinical fx -28%
- Non-vertebral fx -26%

II year

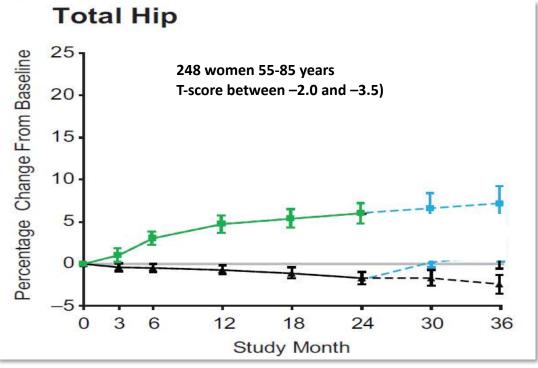
- clinical fx -27%
- non-vertebral fx -19%
- hip fx -38%

Saag KG et al, NEJM 2017

Appelman-Dijkstra N & Papapoulos SE, Nat Rev Endocrinol 2018



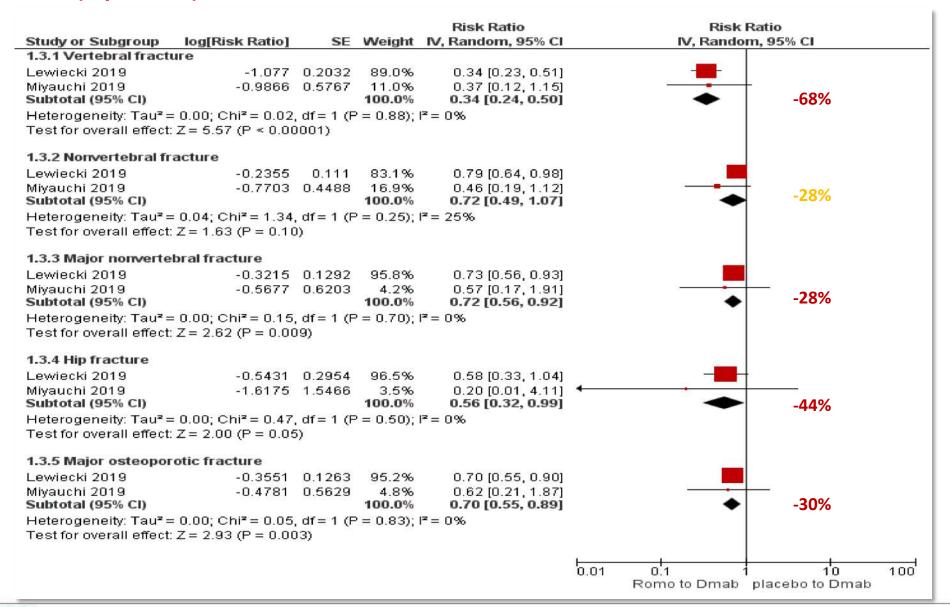
ROMOSOZUMAB → DENOSUMAB


419 PM women (age 55-85 years, T-score between -2.0 and -3.5) and not at high risk for fractures receiving ROMO (24 months) who transitioned to DMAB continued to accrue BMD, whereas BMD returned toward pretreatment levels with placebo

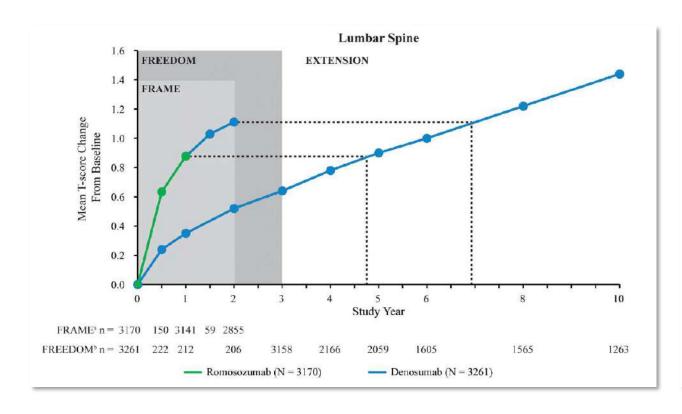
- - Placebo Q6M^b

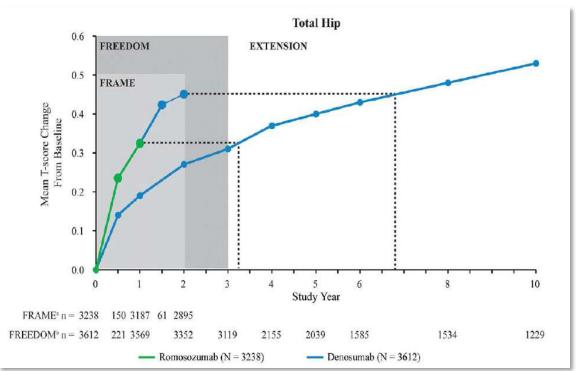
McClung ER et al, J Bone Mineral Res 2018

Riduzione del rischio di frattura in pazienti a 12 mesi da switch da Romosozumab (o placebo) a Denosumab


Study or Subgroup	log[Risk Ratio]	SE Moight	Risk Ratio IV, Random, 95% CI	Risk I IV, Randoi	
1.2.1 Vertebral fracti		SE Weight	iv, Random, 95% Ci	iv, Rando	II, 95% CI
Cosman 2016 Subtotal (95% CI)	-1.3863 0.2	277 100.0% 100.0 %		#	-75%
Heterogeneity: Not ap Test for overall effect:	oplicable Z= 6.09 (P < 0.00001)	r			
1.2.2 Nonvertebral fr	acture				
Cosman 2016 Subtotal (95% CI)	-0.2877 0	.14 100.0% 100.0 %		•	-25%
Heterogeneity: Not ap Test for overall effect:				7	
1.2.3 Major nonverte	bral fracture				
Cosman 2016 Subtotal (95% CI)	-0.4005 0.1	596 100.0% 100.0 %	0.67 [0.49, 0.92] 0.67 [0.49, 0.92]	-	-33%
Heterogeneity: Not ap Test for overall effect:	10 -				
1.2.4 Hip fracture				,	
Cosman 2016 Subtotal (95% CI)	-0.6931 0.3	745 100.0% 100.0 %	0.50 [0.24, 1.04] 0.50 [0.24, 1.04]	-	- 50%
Heterogeneity: Not as Test for overall effect:					
1.2.5 Major osteopor	otic fracture				
Cosman 2016 Subtotal (95% CI)	-0.478 0.1	523 100.0% 100.0 %		-	-38%
Heterogeneity: Not ap Test for overall effect:					
				0.01 0.1 1 Romo to Dmab	1'0 100' placebo to Dmab

Riduzione del rischio di frattura in pazienti a 24 mesi da switch da Romosozumab (o placebo) a Denosumab





ROMOSOZUMAB → DENOSUMAB

One year Romosozumab followed by one year Denosumab gains approximating the effect of 7 years of continuous Denosumab administration

Cosman F et al, J Bone Mineral Res 2018

qualità delle prove moderata

QUESITO 4 Pag 810-909/1178

Quale strategia terapeutica, sia a breve che a lungo termine, risulta più efficace nel trattamento del paziente con frattura da fragilità?

Nei pazienti a più elevato o imminente rischio di rifrattura si raccomanda di pianificare un trattamento sequenziale da anabolico ad antiriassorbitivo.

* * * * * Raccomandazione forte a favore dell'intervento

Considerazioni pratiche

Al termine del trattamento anabolico è indispensabile avviare al più presto un trattamento antiriassorbitivo

Me	etodologia PICO
Р	patient (paziente)
I	intervention (intervento)
С	comparison (controllo)
0	outcomes (risultati)

AGENDA

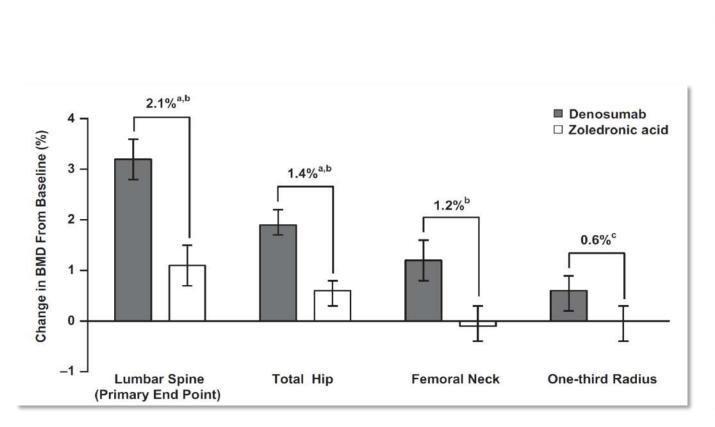
- Premesse e definizion
- Paziente naïve ad alto rischio di frattura o di rifrattura
- Paziente in terapia antiriassorbitiva
- Terapia combinata
- Conclusion

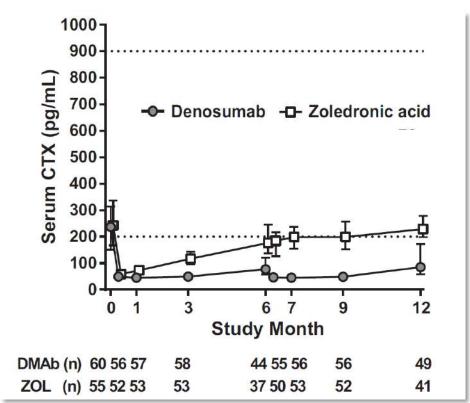
Treatment failure in osteoporosis

A. Diez-Perez · J. D. Adachi · D. Agnusdei · J. P. Bilezikian · J. E. Compston · S. R. Cummings · R. Eastell · E. F. Eriksen · J. Gonzalez-Macias · U. A. Liberman · D. A. Wahl · E. Seeman · J. A. Kanis · C. Cooper for the IOF CSA Inadequate Responders Working Group

Three general rules, based on the opinion of the working group, are recommended:

- (1) A weaker anti-resorptive is reasonably replaced by a more potent drug of the same class.
- (2) An oral drug is reasonably replaceable by an injected drug.
- (3) A strong anti-resorptive is reasonably replaceable by an anabolic agent.





DENOSUMAB OR ZOLEDRONATE AFTER BISPHOSPHONATES

Design and Setting: multicenter, randomized, double-blind trial.

Participants: A total of 643 postmenopausal women with osteoporosis previously treated with oral bisphosphonates

Miller PD et al, JCEM 2020

Treatment failure in osteoporosis

A. Diez-Perez · J. D. Adachi · D. Agnusdei · J. P. Bilezikian · J. E. Compston · S. R. Cummings · R. Eastell · E. F. Eriksen · J. Gonzalez-Macias · U. A. Liberman · D. A. Wahl · E. Seeman · J. A. Kanis · C. Cooper for the IOF CSA Inadequate Responders Working Group

Three general rules, based on the opinion of the working group, are recommended:

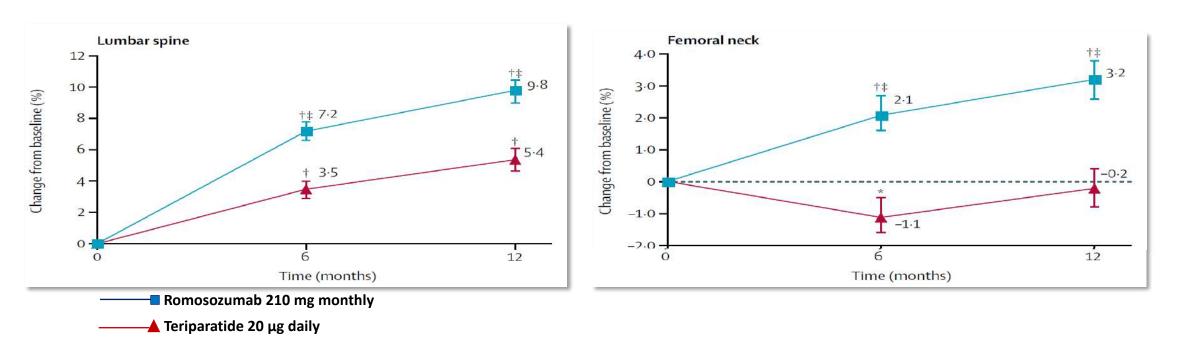
- (1) A weaker anti-resorptive is reasonably replaced by a more potent drug of the same class.
- (2) An oral drug is reasonably replaceable by an injected drug.
- (3) A strong anti-resorptive is reasonably replaceable by an anabolic agent.

Riduzione del Rischio di QUALSIASI frattura a 12 mesi dallo switch da Anti-riassorbitivo (o placebo) a Teriparatide

				Risk Ratio	Risk Ra	atio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 9	95% CI
Obermayer-Pietsch 2008	-0.9778	0.7169	100.0%	0.38 [0.09, 1.53]		-
Total (95% CI)			100.0%	0.38 [0.09, 1.53]		
Heterogeneity: Not applicat					0.01 0.1 1	10 100
Test for overall effect: $Z = 1$.	36 (P = 0.17)				no treatment to TPT E	BisP or AR to TPT

SEQUENTIAL THERAPY AFTER ANTIRESORPTIVES BISPHOSPHONATES → TERIPARATIDE

- The more potent the bisphosphonate the greater the delay in TPT response.
- The delay in response to PTH is not always seen
- The delay is independent of which BP is used and of BP wash-out
- BMD increases are lower than those achieved when TPT is administered in naïve patients

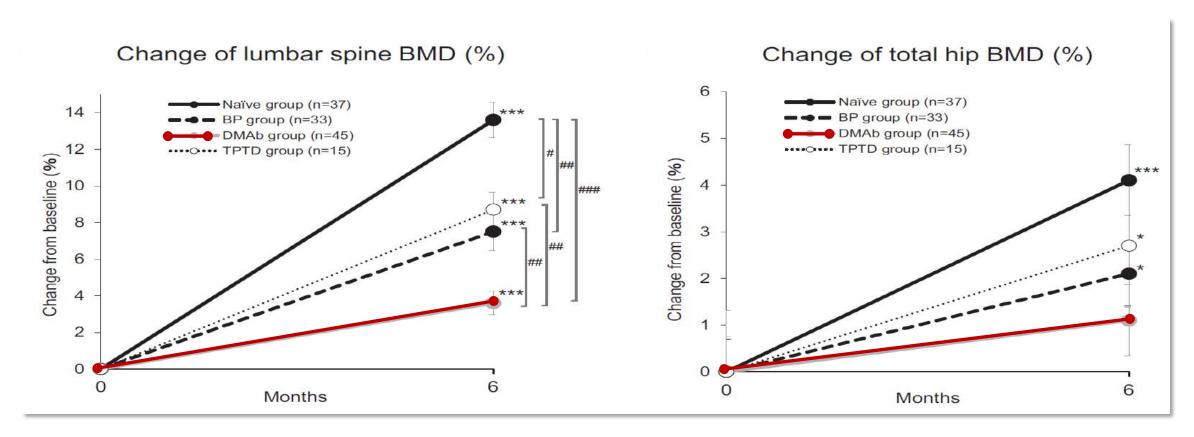

Ettinger, 2004; Miller, 2008; Obermayer-Pietssch 2008, Lewiecki 2020

SEQUENTIAL THERAPY AFTER ANTIRESORPTIVES BISPHOSPHONATES → ROMOSOZUMAB OR TERIPARATIDE?

436 women (mean age 71.5 years) who had received bisphosphonate treatment for ≥3 years and Ale in the year prior to screening randomized to Romosozumab or Teriparatide

Increases in BMD with romosozumab treatment were significantly greater than with teriparatide at all measured skeletal sites (P<0.0001).

Langdahl, B. L. et al., Lancet 2017

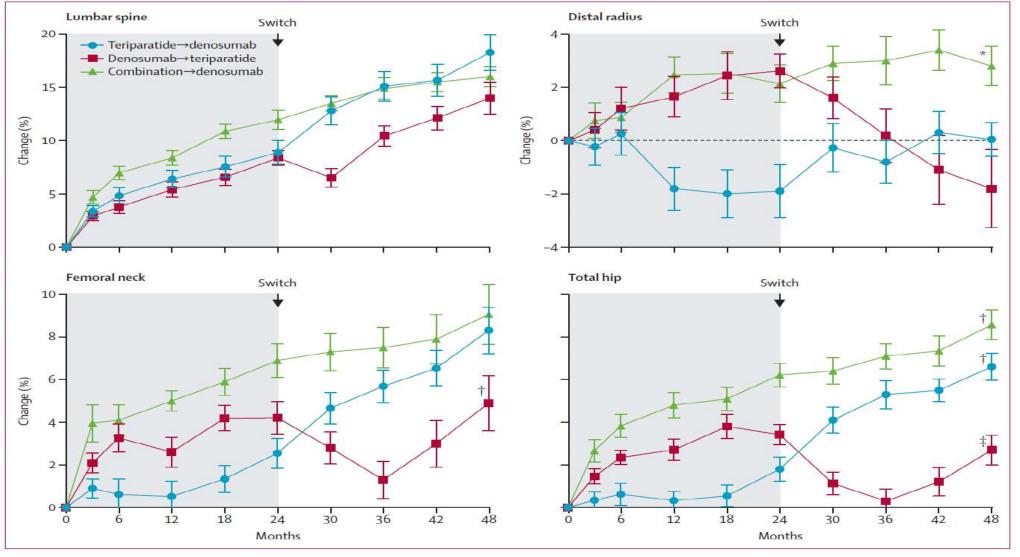


PREVIOUS TREATMENTS -> ROMOSOZUMAB

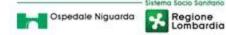
130 treatment-naïve patients (Naïve; n = 37) or patients previously treated with bisphosphonates (BP; n = 33), denosumab (DMAb; n = 45), or teriparatide (TPTD; n = 15) (age, 75.0 years; LS T-scores -3.2 and FN T-scores -2.9) were switched to ROMO based on their physician's decision

Early effects of ROMO on the increase in LS BMD are significantly affected by the difference of prior treatment

Ebina K et al, Bone 2020



SEQUENTIAL THERAPY AFTER ANTIRESORPTIVES DENOSUMAB → TERIPARATIDE



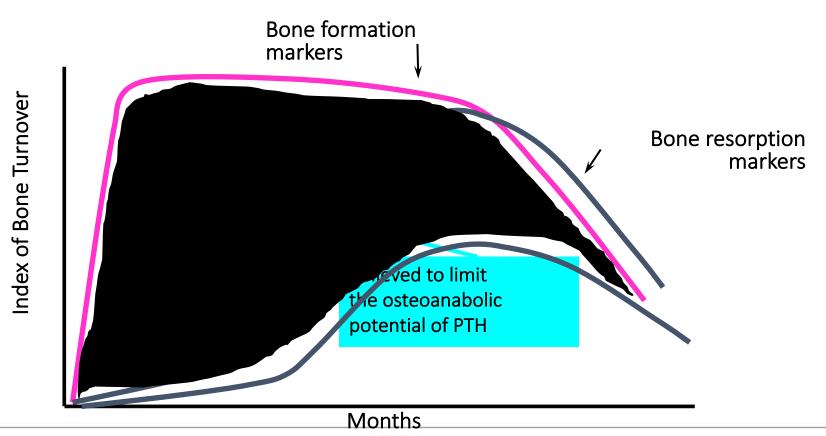
DISCONTINUATION OF DENOSUMAB THERAPY FOR OSTEOPOROSIS: A SYSTEMATIC REVIEW AND POSITION STATEMENT BY ECTS

- There appears to be an increased risk of multiple vertebral fractures after discontinuation of denosumab.
- A re-evaluation should be performed after 5 years of DMAb treatment:
 - Patients at high fracture risk should either continue DMab therapy for up to 10 years or be switched to an alternative treatment.
 - For patients at low risk, if DMAb is discontinued a bisphosphonate therapy should be considered to reduce or prevent the rebound increase in bone turnover.
- However, since the optimal bisphosphonate regimen post-denosumab is currently unknown continuation of denosumab can also be considered until results from ongoing trials become available.

Tsourdi E et al, Bone 2017

AGENDA

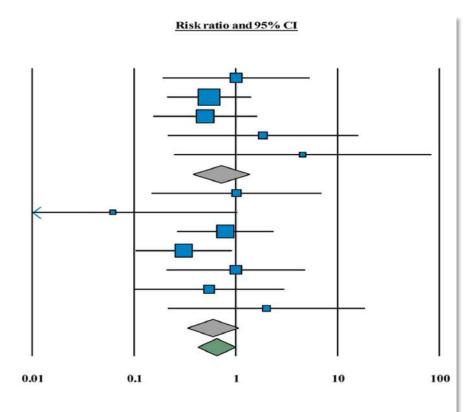
- Premesse e definizioni
- Paziente naïve ad alto rischio di frattura o di rifrattura
- Paziente in terapia antiriassorbitiva
- Terapia combinata
- Conclusion



COMBINED THERAPY BISPHOSPHONATES+TERIPARATIDE

Rationale: Two different mechanisms of action

- It would prevent the increase in the PTH-associated bone resorption that may limit the actions of PTH
- It would prevent the excessive reduction of bone apposition potentially associated with the antiresorptive therapy



COMBINATION THERAPY WITH PARATHYROID HORMONE ANALOGS AND ANTIRESORPTIVE AGENTS FOR OSTEOPOROSIS: A SYSTEMATIC REVIEW AND META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS

Forest plot fracture events

Group by	Study name	Events	/ Total		ady		
Comparator		Combination	Monotherapy	Risk ratio	Lower limit	Upper limit	p-Value
VS ANA	Black 2003(1)	2/59	4/119	1.01	0.19	5.35	0.99
VS ANA	Cosman 2009	6/99	11/99	0.55	0.21	1.42	0.21
VS ANA	Cosman 2011(1)	4/137	8/137	0.50	0.15	1.62	0.25
VS ANA	Muschitz 2013	4/80	1/37	1.85	0.21	15.98	0.58
VS ANA	Walker 2013(1)	2/10	0/9	4.55	0.25	83.70	0.31
VS ANA		18/385	24 / 401	0.71	0.38	1.34	0.29
VS ANTI	Black 2003(2)	2/59	2/60	1.02	0.15	6.98	0.99
VS ANTI	Cosman 2001	0/27	7/25	0.06	0.00	1.03	0.05
VS ANTI	Cosman 2005	5/38	6/36	0.79	0.26	2.36	0.67
VS ANTI	Cosman 2011(2)	4/137	13 / 137	0.31	0.10	0.92	0.03
VS ANTI	Fogelman 2008	3/90	3/90	1.00	0.21	4.82	1.00
VS ANTI	Lane 1998	2/28	3/23	0.55	0.10	3.00	0.49
VS ANTI	Walker 2013(2)	2/10	1/10	2.00	0.21	18.69	0.54
VS ANTI		18/389	35/381	0.59	0.33	1.05	0.07
Overall		36 / 774	59 / 782	0.64	0.42	0.98	0.04

ANA, anabolic agents; ANTI, antiresorptive agents

Lou S et al Osteoporos Int 2019

Favours Combination

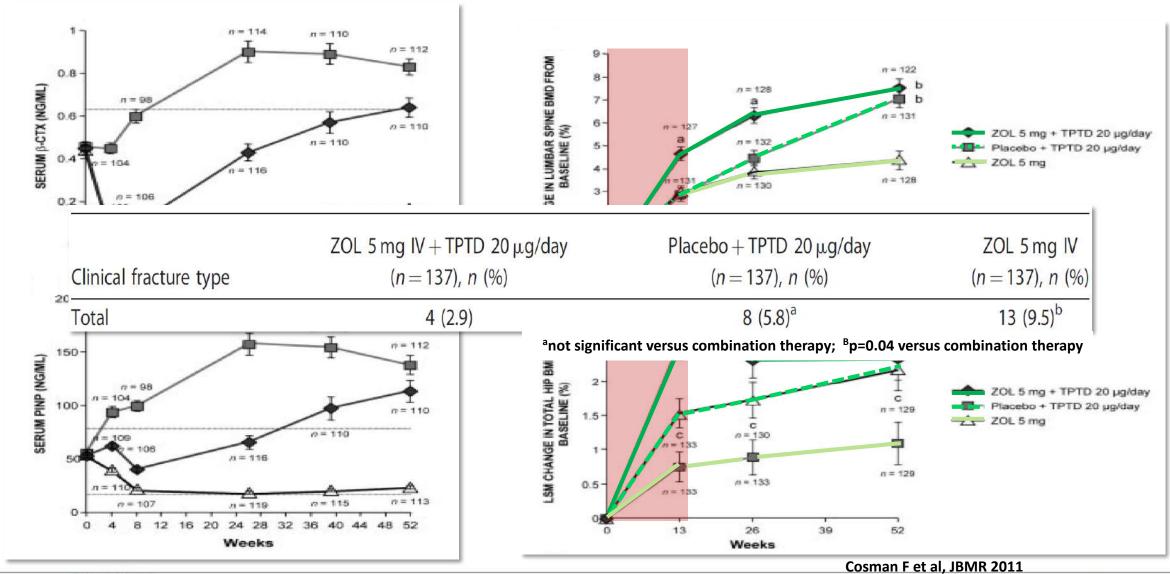
Favours Monotherapy

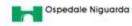
COMBINATION THERAPY OF ANABOLIC AGENTS AND BISPHOSPHONATES ON BONE MINERAL DENSITY IN OSTEOPOROSIS: RCTS

Combination			nts	Osteo	porosis status		Trial duration
PTH + ALN			238 postm women		-2.5 or T <	-2 and risk factor	12 mo
TPTD + ZOL	TPTD/ZOL	412 postr	n women	T <	-2.5 or T <	— 2 and prior fx	1 yr
TPTD + DMAB	TPTD/DMA	B 94 postm	women	T <	−2.5 or T <	-2 and risk factor	2 yrs
Combination	Comparators	Trial duration	Δ BMD LS	(%)	Δ BMD TH (%)	
PTH + ALN	PTH/ALN	12 mo	6.3 vs. 6.1	/4.6	0.3 vs. 1.9/NA	PaTH Study, Black DM et a	al, NEJM 2003
TPTD + ZOL	TPTD/ZOL	1 yr	7.5 vs. 7.0	/4.4ª	2.3 vs. 1.1/2.2	Cosman F et al, JBMR 201	1*
TPTD + DMAB	TPTD/DMAB	2 yrs	12.9 vs. 9.5	5/8 3ª	6.3 vs. 2.0/3.2	DATA Study, Leder BZ et a	al, JCEM 2014**

Langdahl B, Bone 2020

DEGLI STUDI




^{*}In the combination group, spine BMD increased more rapidly than with either agent alone (p < .001 versus both teriparatide and zoledronic acid at 13 and 26 weeks). Combination therapy increased total-hip BMD more than teriparatide alone at all times (all p < .01) and more than zoledronic acid at 13 weeks (p < .05), with final 52-week increments of 2.3%, 1.1%, and 2.2% in the combination, teriparatide, and zoledronic acid groups, respectively

^{**}The bone turnover markers in the combination groups were more similar to the markers in the denosumab treated women than to the markers in the teriparatide treated women, suggesting that the combination may blunt at least partly the bone forming effect of teriparatide

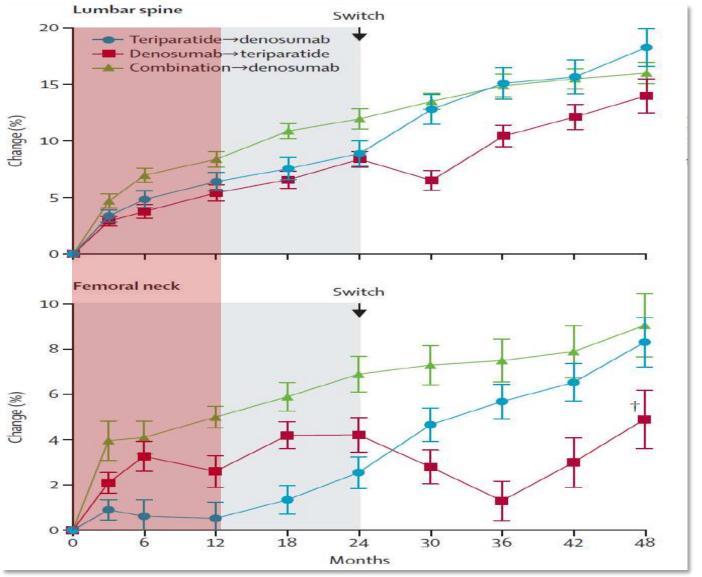
COMBINATION THERAPY: TPT+ZOL

COMBINATION THERAPY OF ANABOLIC AGENTS AND BISPHOSPHONATES ON BONE MINERAL DENSITY IN OSTEOPOROSIS: RCTS

Combination Comparators		rs Participar	nts	Osteo	Trial duration		
PTH + ALN	PTH/ALN	238 postr	n women	T <	-2.5 or T <	-2 and risk factor	12 mo
TPTD + ZOL	TPTD/ZOL	412 postr	n women	T <	-2.5 or T <	— 2 and prior fx	1 yr
TPTD + DMAB	TPTD/DMA	B 94 postm	women	T <	-2.5 or T <	-2 and risk factor	2 yrs
Combination	Comparators	Trial duration	Δ BMD LS	(%)	Δ BMD TH (%	b)	
PTH + ALN	PTH/ALN	12 mo	6.3 vs. 6.1	4.6	0.3 vs. 1.9/N/	PaTH Study, Black DM et	al, NEJM 2003
TPTD + ZOL	TPTD/ZOL	1 yr	7.5 vs. 7.0	/4.4ª	2.3 vs. 1.1/2.:	2 ^a Cosman F et al, JBMR 201	.1*
TPTD + DMAB	TPTD/DMAB	2 yrs	12.9 vs. 9.5	5/8 3ª	6.3 vs. 2.0/3.2	DATA Study, Leder BZ et a	al, JCEM 2014**

Langdahl B, Bone 2020

DEGLI STUDI

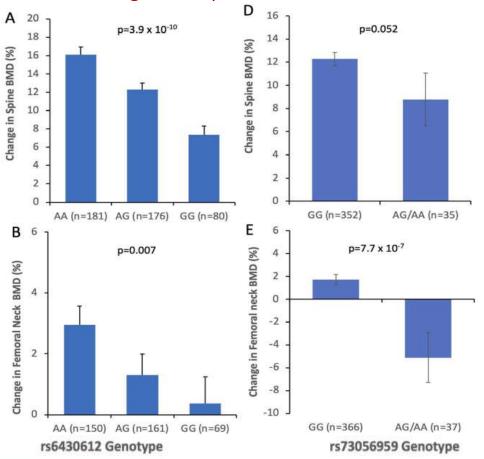


^{*}In the combination group, spine BMD increased more rapidly than with either agent alone (p < .001 versus both teriparatide and zoledronic acid at 13 and 26 weeks). Combination therapy increased total-hip BMD more than teriparatide alone at all times (all p < .01) and more than zoledronic acid at 13 weeks (p < .05), with final 52-week increments of 2.3%, 1.1%, and 2.2% in the combination, teriparatide, and zoledronic acid groups, respectively

^{**}The bone turnover markers in the combination groups were more similar to the markers in the denosumab treated women than to the markers in the teriparatide treated women, suggesting that the combination may blunt at least partly the bone forming effect of teriparatide

COMBINATION THERAPY: TPT+DMAB

AGENDA


- Premesse e definizioni
- Paziente naïve ad alto rischio di frattura o di rifrattura
- Paziente in terapia antiriassorbitiva
- Terapia combinata
- Conclusioni

Genome-wide association study identifies genetic variants which predict the response of bone mineral density to teriparatide therapy

Relation between allelic variants and percentage changes in BMD following TPT at spine and femur

GWA in 347 treated with TPT for at least 18 months

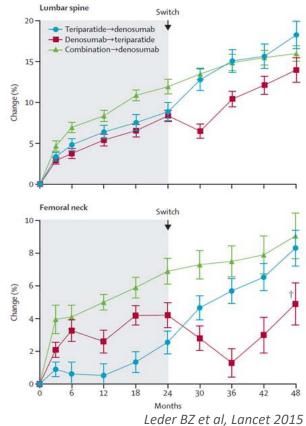
A locus on chromosome 19 tagged by rs73056959 was associated with the response of femoral neck BMD to TPTD (p = 3.5x10-9, beta = -1.61 [-2.14 - -1.07]

Allelic variation at rs6430612 on chromosome 2, close to the CXCR4 gene was associated with the response of spine BMD to TPTD at a genome wide significant level (p=9.2x10-9 beta= -0.35 [-0.47- -0.23]). The increase in BMD was almost twice as great in AA homozygotes at rs6430612 as compared with GG homozygotes with intermediate values in heterozygotes. The same variant was also associated with response of femoral neck and total hip BMD (p=0.007).

Genetic factors influence the response to TPTD at the lumbar spine and hip with a magnitude of effect that is clinically relevant

SEQUENTIAL REGIMENS

Anabolic (or Dual Active) to Antiresorptive

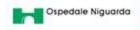

- ✓ Necessary, due to the limited duration of anabolic treatment (1 yr ROMO, 2yr PTH analogs)

Antiresorptive to Anabolic (or Dual Active)

- ✓ Transitioning from **NBPs to PTH analogs** leads to lower BMD gains than in treatment naive pts (but the increase in BMD is generally higher than continuing the same NBP)
- ✓ Transitioning from **Dmab to PTH analogs** may be problematic (better ROMO?)

Antiresorptive to Antiresorptive

- ✓ Transitioning from **NBPs to Dmab** leads to greater BMD gains vs continuing NBPs (but the increase in BMD is generally lower than observed in treatment naive pts)
- ✓ Transitioning from **Dmab to NBPs** is often required to maintain BMD gains and avoid the rebound increase in bone resorption


- Transitioning from one agent to another is common and often necessary in the long-term management.
- The use of either Dmab or PTH analogs after NBPs increases BMD, but to a lesser extent than in naive pts.
- When possible, preferentially start with bone anabolic drugs followed by antiresorptive treatment

